

### American Society of Hematology Helping hematologists conquer blood diseases worldwide



### Pharmacokinetic and Pharmacodynamic Correlates From the Phase 1 Study of Camidanlumab Tesirine (Cami) in Patients With Relapsed or Refractory Hodgkin Lymphoma and Non-Hodgkin Lymphoma

Joseph Boni,<sup>1</sup> Karin Havenith,<sup>2</sup> Mehdi Hamadani,<sup>3</sup> Paolo Caimi,<sup>4</sup> Katie Anderson,<sup>2</sup> Tim Kopotsha,<sup>2</sup> Hans G. Cruz,<sup>5</sup> Jens Wuerthner<sup>5</sup>

<sup>1</sup>Clinical Development, ADC Therapeutics America, Inc., Murray Hill, NJ, USA; <sup>2</sup>Clinical Research, ADC Therapeutics (UK) Ltd, London, UK; <sup>3</sup>Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; <sup>4</sup>University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH, USA; <sup>5</sup>Clinical Development, ADC Therapeutics SA, Epalinges, Switzerland

Poster slides, 62nd ASH Annual Meeting and Exposition, Virtual Meeting, December 5–8, 2020 Poster Session III, Monday, December 7, 2020: 7:00 am – 3:30 pm (Pacific Time)

# Background

#### Camidanlumab tesirine (Cami)

 An ADC comprising a human mAb, HuMax<sup>®</sup>-TAC, directed against human CD25, stochastically conjugated to a PBD dimer warhead

#### Mechanism of action<sup>1–3</sup>

- Death of CD25-positive tumor cells
- Depletion of CD25-positive T cells
- Possible bystander killing of CD25-negative cells



1. Hartley JA. *Expert Opin Investig Drugs* 2011;20:733–44; 2. Flynn MJ, et al. *Mol Cancer Ther* 2016;15:2709–21; 3. Zammarchi F, et al. *J ImmunoTher Cancer* 2020;8:e000860. **ADC**, antibody-drug conjugate; **mAb**, monoclonal antibody; **PBD**, pyrrolobenzodiazepine.

# **Study Methods and Objectives**

Phase 1, first-in-human, open-label, single-arm, dose-escalation<sup>a</sup>, dose-expansion trial (NCT02432235) of patients ≥18 years of age with R/R cHL or NHL receiving Cami in doses of 3–150 µg/kg IV Q3W<sup>b</sup>

- The two recommended doses for expansion in the cHL population were 30 and 45  $\mu g/kg$ 

#### **Primary objectives:**

Characterize Cami

safety and tolerability,

and determine MTD

#### Secondary and exploratory objectives:

- Evaluate antitumor activity of Cami, including ORR and DoR
- PK profile of Cami, PBD-cAb<sup>c</sup>, tAb<sup>d</sup>, and unconjugated warhead, SG3199
- ADA response in serum
- PK/PD correlates to:
  - sCD25 concentrations
  - time course of peripheral B cells, NK cells, T-cell subsets ( $T_{eff}$ ,  $T_{reg}$ ), and  $T_{eff}$ :  $T_{reg}$  ratio
  - IHC on archival or pre-treatment tumor biopsies for CD25 expression

Here, we report PK/PD correlates using data from 133 patients (77 with R/R cHL, 56 with R/R NHL)

<sup>a</sup>Conducted per continual reassessment method; <sup>b</sup>One patient received an unplanned dose of 300  $\mu$ g/kg for the first dose but continued in the study with subsequent dosing as planned at 30  $\mu$ g/kg; <sup>c</sup>DAR  $\geq$ 1; <sup>d</sup>DAR  $\geq$ 0. **ADA**, anti-drug antibody; **cAb**, conjugated antibody; **cHL**, classical Hodgkin lymphoma; **DAR**, drug-to-antibody ratio; **DoR**, duration of response; **IHC**, immunohistochemistry; **IV**, intravenous; **MTD**, maximum tolerated dose; **NHL**, non-Hodgkin lymphoma; **NK**, natural killer; **ORR**, overall response rate; **PBD**, pyrrolobenzodiazepine; **PD**, pharmacodynamic; **PK**, pharmacokinetic; **Q3W**, every 3 weeks; **R/R**, relapsed or refractory; **sCD25**, soluble CD25; **tAb**, total antibody; **T**<sub>eff</sub>, effector T cell (CD8+); **T**<sub>reg</sub>, regulatory T cell (CD25+/CD127<sub>low</sub>/FoxP3+[CD3+/CD4+]).



## **Results: Pharmacokinetics and Immunogenicity**

#### PK for 3–300 $\mu g/kg$ doses

- Mean exposures increased with dose
- CL for doses 30–80  $\mu$ g/kg relatively constant

#### PK for 45 µg/kg dose (Table)

- Good linker stability of immunoconjugate close similarity in cAb and tAb profiles
- By Cycle 2, similar respective exposures with lower inter-patient variability relative to Cycle 1
- Apparent half-life of cAb 2.69 days (CV=40.2%)
- No accumulation by end of 3-week cycle
- SG3199 levels below LLOQ

#### Immunogenicity

• No instances of positive ADA response

Data shown as geometric mean (geometric CV%)[n].  ${}^{a}AUC_{tau}$  for Cycle 2 observations.

ADA, anti-drug antibody; AI, accumulation index; AUC<sub>inf</sub>, area under concentration-time curve from time zero to infinity (Cycle 1 in Table); AUC<sub>tau</sub>, area under concentration-time curve over Q3W duration of dosing interval (Cycle 2 in Table); cAb, conjugated antibody; CL, apparent clearance; C<sub>max</sub>, observed maximum concentration; CV, coefficient of variation; LLOQ, lower limit of quantification; PBD, pyrrolobenzodiazepine; PK, pharmacokinetic; Q3W, every 3 weeks; tAb, total antibody; T<sub>half</sub>, apparent terminal half-life; V<sub>ss</sub>, apparent steady-state volume of distribution; "-", value not available.



| Summary of PK Parameters in Serum Following Cami 45 $\mu$ g/kg Q3W |         |                            |                                    |                            |                     |                        |                     |
|--------------------------------------------------------------------|---------|----------------------------|------------------------------------|----------------------------|---------------------|------------------------|---------------------|
| Cycle                                                              | Analyte | C <sub>max</sub><br>(µg/L) | AUC <sub>inf</sub> a<br>(day*ug/L) | T <sub>half</sub><br>(day) | CL<br>(L/day)       | V <sub>ss</sub><br>(L) | AI                  |
| 1                                                                  | PBD-cAb | 648 (51.0)<br>[41]         | 1846 (59.9)<br>[29]                | 2.31 (45.5)<br>[29]        | 1.68 (50.3)<br>[29] | 5.08 (23.3)<br>[29]    | -                   |
|                                                                    | tAb     | 803 (54.4)<br>[41]         | 3001 (75.0)<br>[23]                | 2.62 (44.1)<br>[23]        | 1.29 (64.0)<br>[23] | 4.57 (26.9)<br>[23]    | -                   |
|                                                                    | SG3199  | 0.0120 (8.04)<br>[5]       | -                                  | -                          | -                   | -                      | -                   |
| 2                                                                  | PBD-cAb | 808 (55.8)<br>[35]         | 2183 (61.6)<br>[33]                | 2.69 (40.2)<br>[30]        | 1.37 (55.3)<br>[33] | 4.91 (29.9)<br>[30]    | 1.01 (1.48)<br>[30] |
|                                                                    | tAb     | 1040 (60.0)<br>[35]        | 3604 (68.9)<br>[33]                | 3.26 (38.0)<br>[33]        | 1.03 (61.2)<br>[33] | 4.54 (36.0)<br>[33]    | 1.02 (2.59)<br>[33] |
|                                                                    | SG3199  | 0.0170 (46.9)<br>[3]       | -                                  | -                          | -                   | -                      | -                   |

# Results: Modulation of Lymphocyte Populations Post-Dosing

- Lymphocyte populations including total lymphocytes, CD8+ and CD4+ T cells showed transient increases following dosing (Figure)
- Similar pattern seen for CD3+ T cells and CD16+/CD56+ NK cell subsets
- Modulations by time were similar for 30 and 45 μg/kg doses
- No difference by response group at 30 μg/kg; the low rate of non-responders precluded comparison for the 45 μg/kg dose



Dashed vertical lines in figure denote planned dosing event. Available paired lymphocyte and response data for 45 µg/kg predominantly limited to patients achieving CR or PR. CR, complete response; NE, not evaluable; PD, progressive disease; PR, partial response; Q3W, every 3 weeks; SD, stable disease.

# Results: T<sub>reg</sub> Counts and T<sub>eff</sub>:T<sub>reg</sub> Ratios Post-Dosing

- Small absolute decreases in T<sub>reg</sub> cell counts over time seen following the 30 and 45 μg/kg doses (Figure)
- No distinction by best overall clinical response (CR + PR vs. non-responders)
- Most patients had clear increases in T<sub>eff</sub>:T<sub>reg</sub> ratios over time; greater effects seen in Cycle 2 relative to Cycle 1



Dashed vertical lines in figure denote planned dosing event. Available paired  $T_{reg}$  and response data for 45 µg/kg predominantly limited to patients achieving CR or PR. **CR**, complete response; **NE**, not evaluable; **PD**, progressive disease; **PR**, partial response; **SD**, stable disease;  $T_{eff}$ , effector T cell (CD8+);  $T_{reg}$ , regulatory T cell (CD25+/CD127<sub>low</sub>/FoxP3+[CD3+/CD4+]).

## **Results: CD25 Expression and Response**

- With the 45 µg/kg dose, mean sCD25 concentrations displayed apparent decreases from baseline over time
- In cHL, higher baseline sCD25 levels associated with lower Cami exposure in responders and non-responders
- Clustering suggested with sCD25 concentrations <~10,000 ng/L at baseline, particularly for patients with CR (Figure)
- Data from IHC on tumor biopsies<sup>a</sup> for CD25 expression showed no relationship between CD25 histoscore and clinical response

PBD-cAb AUC (Cycle 1) vs. Baseline sCD25 by Best Overall Response in Patients with cHL



Data derived from non-compartmental analysis. <sup>a</sup>Archival or pre-treatment biopsies.

AUC, area under the curve; cAb, conjugated Ab; cHL, classical Hodgkin lymphoma; CR, complete response; IHC, immunohistochemistry; NE, not evaluable; PBD, pyrrolobenzodiazepine; PD, progressive disease; PR, partial response; sCD25, soluble CD25; SD, stable disease.



## Conclusions

- These data suggest patients with cHL achieving complete response have higher exposure to Cami
- Higher exposure appears to result from lower baseline sCD25 and possibly lower tumor burden
- Exposure at the 45  $\mu$ g/kg dose was associated with:
  - cycle-related modulation in circulating T<sub>regs</sub>
  - increased  $T_{eff}$ :  $T_{reg}$  ratios, thought to favor disease response
- T<sub>reg</sub> modulation was seen with all populations and these data support further study of T-cell subpopulations in patients treated with Cami

 $\textbf{cHL}, \textbf{classical Hodgkin lymphoma; sCD25}, \textbf{soluble CD25}; \textbf{T}_{eff}, effector T cell; \textbf{T}_{reg}, regulatory T cell.$ 



## **Disclosures and Acknowledgments**

J. Boni: employee of ADC Therapeutics America, Inc., with ownership interests

K. Havenith, K. Anderson and T. Kopotsha: employees of ADC Therapeutics (UK) Ltd with ownership interests

H. G. Cruz and J. Wuerthner: employees of ADC Therapeutics SA, with ownership interests

**M. Hamadani:** provided consultancy services to Janssen R&D, Incyte Corporation, ADC Therapeutics, Celgene Corporation, Pharmacyclics, Omeros, AbGenomics, Verastem, and TeneoBio; has received research funding from Takeda Pharmaceutical Company, Spectrum Pharmaceuticals, and Astellas Pharma; and has membership on a board of directors, speaker bureau, or advisory committee for Sanofi Genzyme, AstraZeneca, and ADC Therapeutics (advisory board agreement)

P. Caimi: has received research funding from and has an advisory board agreement with ADC Therapeutics

This study is funded by ADC Therapeutics SA (NCT02432235)

#### Acknowledgments

- The authors would like to thank all the participating patients and their families, all study co-investigators and research coordinators
- Editorial support was provided by Heather St Michael of Fishawack Communications Ltd, part of Fishawack Health, funded by ADC Therapeutics

